

Background

- Nuclear thermal propulsion
 - use the energy released from fission to heat and expel liquid hydrogen to produce thrust
- Nuclear electric propulsion
 - uses the energy released from fission to generate electricity and accelerate ions to produce thrust
- What if we cut out the middle-man (hydrogen, conversion to electricity) and "simply" use the fragments (or products) of the nuclear fission to produce thrust?
 - Just throw these guys out the back

The Concept

- Initially thought up by George Chapline of Lawrence Livermore National Laboratory
- Thin carbon filaments coated in micron thick fissile material
- When rotated through the core, nuclear material fissions
 - Fragments are expelled, guided by magnetic fields
- However, fragments that do not escape will heat up the carbon filaments and potentially cause them to melt
- Fragments ejected at speeds a few percent the speed of light
 - Theoretical Isp $> 1,000,000 \sec \Theta$
 - Low thrust 🕾

Figure 1. Fission fragment escape probability for uranium carbide coated graphite fibers.

The Dusty-Plasma Configuration

- Fragments produced from fission are much more likely to escape smaller particles
- So, grind fissile material into "dust" < 100 nm
- Suspend dust inside reactor core using electric fields
- Magnetic fields guide fragments out for thrust
 - Or into a chamber that decelerates fragments using electric fields, generating a high-voltage DC supply

• The low-density and small particle sizes of the dusty plasma allows for sufficient radiative cooling of fuel

Figure 5. Equilibrium fuel particle temperature as a function of particle size.

Figure 3. Fission fragment escape probability as a function of fuel particle size.

Generation I Design

- Initially plutonium and uranium fuels were considered... changed in next iteration
- Inside of core covered in a mirror-heat shield that reflects 95% of thermal energy
- Neutron moderator slows down fast neutrons and redirects them back to the core to be captured; this maintains criticality
 - Beryllium oxide was considered, but it is heavy. So, Lithium hydride is favorable

Figure 8. Magnetically confined dusty plasma cloud.

Lots of power radiated to space as heat; large radiators needed

Generation II Design & Afterburner

- The "tuna can" design 'could not simultaneously support a small enough hole in the moderator to retain sufficient neutrons to keep the core critical and a large enough hole to enable the magnetics to direct the fission fragments out of the reactor.'
- Thrust was still small; Consider a different fuel
 - Uranium-235: 500 barns, 98% of fragments to thermal, 2% to thrust
 - Plutonium-239: 720 barns, 97% of fragments to thermal, 3% to thrust
 - Americium-242m: 7200 barns, 60% to thermal, 40% to thrust

Figure 5-2 Power Allocation			Figure 5-3 Radiator Allocation				
Total Power:	%	SubTot	Element	Radiator	Power (MW)	Temp (°K)	
2500MW				Low Temp	0.400	140	
Neutrons	6.52%	163		Medium Temp	147.575	590	
C-C Shield	.001%		.025	High Temp	302.291	1200	
Moderator	5.764%		144.100	Brayton	1.280	400	
Magnets	0%		0				
to Space	.757%		18.925	Figure 5-4. AF	FRE Baseline Co	onfiguration	
Gammas	2.90%	72.5		Shadow Shi	eld	1	
C-C Shield	.001%		.175	Afterburner H ₂			
Moderator	5.764%		3.475				
Magnets	0%		0.400				
Shadow Shield	1.212 %		30.291				
to Space	1.517 %		37.933	Ŋ.	Magnetic		
Thermal	54.3%	1357.5				2.5GW	
Reflected	43.44%		1085.95	Mass		3.1e-5kg/s 1.8e-2kg/s	
Absorbed	10.86%		271.50	Total	Thrust: 4	1651N	
Nozzle		0.3		Spec		1046lbf 32,000sec	
ITOLLIO		0.0		Брес		2,000300	

Afterburner: Inject liquid hydrogen into the beam-flow of fission fragments. Trade Isp (particle velocity) for increased thrust (mass movement)

Figure 5-5. AFFRE General Arrangement

Fission Fragment MEL		Qtv	Unit Mass (kg)	Basic Mass (kg)	MGA (%)	MGA (ka)	Predicted Mass (kg)	
	Propu				222709	21%	46198	268907
	2.1	Moderator	1	70260	70260	30%	21078	91338
	2.2	Core Heat Shield	1	8000	8000	30%	2400	10400
	2.4	Core Superconducting Magnet Assembly	1	31062	31062	30%	9319	40381
	2.5	Engine Structure	1	7026	7026	30%	2108	9134
	2.6	Nozzle Structure	2	2073	4147	30%	1244	5391
	2.7	Nozzle Magnet Assembly	2	2250	4500	30%	1350	5850
	2.8	Dust Injector	1	2000	2000	30%	600	2600
	2.9	Shadow Shielding	1	25000	25000	30%	7500	32500
	2.10	Control Drums	1	500	500	30%	150	650
	2.11	Hydrogen Pumps	10	50	500	30%	150	650
	2.12	Hydrogen Feed/Injector Assembly	2	500	1000	30%	300	1300
	2.13	Tanks	5	13743	68714	0%	0	68714

AFF	RE
Engine	AFFRE
Engine Mass (reactor)	107,000 kg
Engine Mass (mod oil)	91,000 kg
Engine Mass (total)	268,961 kg
Reactor Power	2.5 GW
Thrust	4,651 N
Thrust Power	730 MW
Specific Impulse	32,000 sec
Exhaust Velocity	313,900 m/s
Mass Flow (FF)	3.12×10 ⁻⁵ kg/s
Mass Flow (Hydrogen)	0.0179 kg/s
Mass Flow (Total)	0.018 kg/s
T/W	0.002

Shifting Gears					
Engine	Isp	Thrust			
FFRE	527,000 sec	43 Newtons			
AFFRE	32,000 sec	4,651 Newtons			

Mission Analysis

- Engine (Dry mass) and moderator oil can be launched on separate Starship flights
 - They chose SLS because this was in 2012 and Starship didn't exist yet.
- Rest of the spacecraft launched and constructed in LEO
- To Mars & back in under 300 days
- Deep-space missions are possible.

Figure 7-1. AFFRE Mars Architecture-

Conclusions

- 1. Fission fragment rocket engines directly expel the products of nuclear fission to produce extremely high Isp, but low thrust
- 2. This type of engine can simultaneously generate more than enough electricity to supply a spacecraft for long durations
- 3. The dusty-plasma self cools; meltdown unlikely
- 4. An "afterburner" configuration (AFFRE) lowers Isp, but increases thrust
- 5. While this engine has not been funded or created yet, **no new physics or materials** are required for its development
- 6. Once a spacecraft is constructed in LEO, the vehicle is useable for decades; journey to and from destinations in-tact
- 7. This engine can likely be further optimized

