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1. Problem 1

Consider an Earth orbit with the following values for its classical orbital elements: perigee
altitude, hp = 5000km, apogee altitude, ha = 10000km, inclination, i = 45◦, right-ascension
of the ascending node, Ω = 45◦, argument of perigee, ω = 45◦, true anomaly, θ = 10◦.
Develop a code in MATLAB (I did this in Python because Dr. Taheri said working in
Python is acceptable) for propagating the two-body differential equations of motion in the
presence of perturbations due to the second zonal harmonic of the Earth.

To do this, we must break down the two-body equation of motion

r̈ =
−µ
r3

r (1)

into two differential equations with only one derivative in each:

dri
dt

= vi (2)

dvi

dt
=

−µ
r3

ri (3)

where ri is the position vector of body i (i = 1, 2), vi is the velocity vector of body i,
and r is the norm of the vectors (r2 − r1). These two differential equations can then be
solved via scipy’s odeint function when given the 12 initial conditions (3 for body 1’s x, y,
and z position, 3 for body 2’s position, 3 for body 1’s x, y, and z velocities, and body 2’s
velocities) and a time to integrate over; in our case 100 times the orbital period T .

Before these equations can be integrated, however, we must obtain the state vectors r
and v for the satellite (the Earth is assumed to be stationary, so it’s state vectors = 0).
They can be obtained via algorithm 4.5 on page 218 of the textbook. Once the state vectors
in the geocentric equatorial frame have been calculated, we can must add J2 acceleration
onto the satellite’s motion. Finally, we can solve eq. 2 and 3 with Numpy’s odeint function
and plot the results.

Presented below are figures of the orbit produced by my code. The propagation time is
100 ∗ T and the initial classical orbital elements are those given in the problem:
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(i) View from above the orbit; J2 included

(ii) Edge on view of orbit. J2 Perturbation is seen
as the thickening of the orbit line as it crosses the
face of the sphere/Earth

(iii) Polar view of orbit; J2 included

(iv) The same orbit without J2 perturbations -
still propagated by 100 * T. Notice no deviation in
the orbit with time, unlike the other three figures
which incorporate J2

1.1 Part a

Next, I provide the time evolution of the right-ascension of the ascending node, Ω, argument
of perigee, ω, and true anomaly, θ, inclination, i, eccentricity, e, and semimajor axis a.
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Figure 2: Time evolution of right-ascension of the ascending node, argument of perigee, and
true anomaly, inclination, eccentricity, and semimajor axis.

These classical orbital elements can be calculated fairly using the time history of the
state vectors (as calculated with odeint) and various orbital equations we have learned.

1.2 Part B

The average time rate of change of the right ascension of the ascending node is

Ω̇ = −0.495◦/day = 0.495◦ per day to the west (4)

The average time rate of change of the argument of perigee is

ω̇ = 0.5253◦/day to the east (5)

My code will be attached at the end of the document.

2. Problem 2

2.1 Part a

2.1.1 Question 1

The ISS is on an orbit with an inclination of 51.64◦because this is the minimum inclination
which Russians can launch Soyuz (safely) into orbit. Russia’s Launch site is at Baikonur
Cosmodrome which has a latitude of 45.6◦thus, launching (most efficiently) from here puts
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spacecrafts in a 45.6◦inclined orbit. However, dropping boosters at this inclination would
result in them impacting mainland China, so to avoid this, the minimum inclination is
pushed up to 51.6◦. This inclination also allows the ISS to pass over much of Earth’s
surface over multiple orbits - about 75% of Earth’s surface is traversed by the ISS.

2.1.2 Question 2

According to the video, the Soyuz’s targeted parking orbit is about 220 km above the surface
of the earth.

2.2 Part b

2.2.1 Question 1

Two docking options exist: Automatic docking where the docking process is controlled by
Soyuz’s on board computer - this is typically what is done; the second option is a manual
docking where the commander of the Soyuz controls translation and rotation of the craft
until it mates with the ISS.

2.2.2 Question 2

The purpose of the phasing orbit is to decrease the phasing angle between the Soyuz and
the ISS. Because the phasing orbit is lower than the ISS orbit, the Soyuz will have a greater
velocity than the ISS and can catch up to the ISS or until the required phasing angle is
met.

2.2.3 Question 3

A bi-elliptic transfer is used instead of a Hohmann transfer because a bi-elliptic transfer
will allow the Soyuz to reach the correct orbital altitude near the ISS along with exactly
the required speed to meet with the ISS.

2.2.4 Question 4

The side-burn is used to change the Soyuz’s orbital plane slightly, making a collision with
the ISS impossible.

3. PYTHON CODE WRITTEN FOR PROBLEM 1

1 import numpy as np
2 import scipy as sci
3 import scipy. integrate # ode solver solve ivp(function, t span, y0) : tspan is interval of integration
4 from matplotlib import pyplot as plt
5 from mpl toolkits.mplot3d import Axes3D
6 # from mpl toolkits.basemap import Basemap
7

8 # Define Classical Orbital Elements and other variables
9 Re = 6378 # radius of Earth (km)

10 u0 = 398600 # Standard Gravitational Parameter in kmˆ3/sˆ2
11 hp = 5000 # Altitude of Perigee (km)
12 ha = 10000 # Altitude of Apogee (km)
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13 perigee = Re + hp # Perigee radius
14 apogee = Re + ha # Apogee radius
15 a = (apogee + perigee) / 2 # Semi−major Axis
16 # print(a)
17 i = np.deg2rad(45) # Inclination in radians (value in function in degrees)
18 raan = np.deg2rad(45) # Right−Ascension of the Ascending Node in radians (value in function in

degrees)
19 w = np.deg2rad(45) # Argument of Perigee in radians (value in function in degrees)
20 ta = np.deg2rad(10) # True Anomaly in radians (value in function in degrees)
21 e = (apogee − perigee) / (apogee + perigee) # Eccentricity of orbit in degrees
22 v perigee = np.sqrt(2 ∗ ((u0 / perigee) − (u0 / (2 ∗ a)))) # Velcoity of spacecraft at perigee in km/s

; from conservation of energy equation
23 h = perigee ∗ v perigee # specific angular momentum of spacecraft in kmˆ2/s
24 T = ((2 ∗ np.pi) / np.sqrt(u0)) ∗ a ∗∗ (3.0 / 2.0) # period in seconds
25 T hrs = T / 3600.0
26 #˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
27 # Gravitational Parameters
28 G = 6.67408e−20 # Gravitational Constant in kmˆ3/(kg∗sˆ2)
29 Me = 5.9722e+24 # Mass of Earth in kg
30 theta E = np.deg2rad(15.04 / 3600) # rotation rate of earth in rads/s
31 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

32 # Calculate State Vectors r & v via Algorithm 4.5 from ’Orbital Mechanics for Engineering Students’ pg
.218

33

34 r xbar const = ((h ∗∗ 2) / u0) ∗ (1 / (1 + e ∗ np.cos(ta)))
35 r xbar = (r xbar const ∗ np.cos(ta) , r xbar const ∗ np.sin(ta) , 0)
36

37 v xbar const = u0 / h
38 v xbar = (v xbar const ∗ −np.sin(ta), v xbar const ∗ (e + np.cos(ta)), 0)
39

40 q1 = np.matrix([[np.cos(w), np.sin(w), 0], [−np.sin(w), np.cos(w), 0], [0, 0, 1]])
41 q2 = np.matrix([[1, 0, 0], [0, np.cos(i ) , np.sin( i ) ], [0, −np.sin(i) , np.cos(i ) ]])
42 q3 = np.matrix([[np.cos(raan), np.sin(raan), 0], [−np.sin(raan), np.cos(raan), 0], [0, 0, 1]])
43

44 Q X xbar = np.linalg.multi dot([q1, q2, q3]) # Direction Cosine Matrix
45 Q xbar X = np.matrix.transpose(Q X xbar)
46

47 r X = np.dot(Q xbar X, r xbar) # Position state vector of satellite in the geocentric equitorial frame
(km)

48 v X = np.dot(Q xbar X, v xbar) # Velocity state vector of satellite in the geocentric equitorial frame
(km/s)

49

50 r E = np.zeros((3)) # Position state vector of Earth
51 v E = np.zeros((3)) # Velocity state vector of Earth
52

53 l = np.array([r E [0], r E [1], r E [2], r X[0, 0], r X[0, 1], r X[0, 2], v E [0], v E[1], v E[2], v X[0,
0], v X[0, 1], v X[0, 2]])

54 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
55 # Calculate components of acceleration of satellite from equation of motion r’’ = −(u0/magnitude(r X

ˆ3))∗vector(r X)
56

57

58 def TwoBodyEoM(l, t):
59 r1 = l [:3]
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60 r2 = l [3:6]
61 v1 = l [6:9]
62 v2 = l [9:12]
63 r = np.linalg .norm(r2 − r1)
64 aj2 coefficient = (−3.0 / 2.0) ∗ J2 ∗ (u0 / r ∗∗ 2) ∗ (Re / r) ∗∗ 2
65 aj2x = aj2 coefficient ∗ (1 − 5 ∗ ((r2 [2] / r) ∗∗ 2)) ∗ (r2 [0] / r)
66 aj2y = aj2 coefficient ∗ (1 − 5 ∗ ((r2 [2] / r) ∗∗ 2)) ∗ (r2 [1] / r)
67 aj2z = aj2 coefficient ∗ (3 − 5 ∗ ((r2 [2] / r) ∗∗ 2)) ∗ (r2 [2] / r)
68 aj2 = np.array([aj2x, aj2y, aj2z ])
69

70 dv1dt = (−u0 / r ∗∗ 3) ∗ r1
71 dv2dt = (−u0 / r ∗∗ 3) ∗ r2 + aj2
72 dr1dt = v1
73 dr2dt = v2
74

75 r derivs = np.concatenate((dr1dt, dr2dt))
76 derivs = np.concatenate((r derivs, dv1dt, dv2dt))
77 return derivs
78

79

80 initial parameters = np.array([r E [0], r E [1], r E [2], r X[0, 0], r X[0, 1], r X[0, 2], v E [0], v E[1],
v E[2], v X[0, 0], v X[0, 1], v X[0, 2]])

81 t span = np.linspace(0, 100 ∗ T, 10001)
82

83 two body sol = sci. integrate .odeint(TwoBodyEoM, initial parameters, t span)
84

85 rE sol = two body sol[:, :3]
86 rS sol = two body sol[:, 3:6]
87 rE sol velo = two body sol[:, 6:9]
88 rS sol velo = two body sol[:, 9:12]
89

90 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
91 # Create Sphere at origin to represent Earth
92 u, v = np.mgrid[0:2 ∗ np.pi:100j , 0:np.pi:50j ]
93 x sphere = Re ∗ np.cos(u) ∗ np.sin(v)
94 y sphere = Re ∗ np.sin(u) ∗ np.sin(v)
95 z sphere = Re ∗ np.cos(v)
96

97 # This function below taken from Karlo’s Solution on Stack Overflow: https://stackoverflow.com/
questions/13685386/matplotlib−equal−unit−length−with−equal−aspect−ratio−z−axis−is−not−
equal−to

98

99

100 def set axes equal (ax):
101 ’’’ Make axes of 3D plot have equal scale so that spheres appear as spheres,
102 cubes as cubes, etc .. This is one possible solution to Matplotlib’s
103 ax.set aspect (’equal’) and ax.axis(’ equal’) not working for 3D.
104

105 Input
106 ax: a matplotlib axis , e.g ., as output from plt.gca().
107 ’’’
108

109 x limits = ax.get xlim3d()
110 y limits = ax.get ylim3d()
111 z limits = ax.get zlim3d()
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112

113 x range = abs(x limits [1] − x limits [0])
114 x middle = np.mean(x limits)
115 y range = abs(y limits [1] − y limits [0])
116 y middle = np.mean(y limits)
117 z range = abs(z limits [1] − z limits [0])
118 z middle = np.mean(z limits)
119

120 # The plot bounding box is a sphere in the sense of the infinity
121 # norm, hence I call half the max range the plot radius.
122 plot radius = 0.5 ∗ max([x range, y range, z range])
123

124 ax.set xlim3d([x middle − plot radius, x middle + plot radius])
125 ax.set ylim3d([y middle − plot radius, y middle + plot radius])
126 ax.set zlim3d([z middle − plot radius, z middle + plot radius])
127

128

129 fig = plt. figure ()
130 ax = fig.add subplot(111, projection=’3d’)
131 ax.set aspect(”equal”)
132 ax.plot(rE sol [:, 0], rE sol [:, 1], rE sol [:, 2], color=”red”)
133 ax.plot( rS sol [:, 0], rS sol [:, 1], rS sol [:, 2], color=”darkblue”)
134 ax. plot surface (x sphere, y sphere, z sphere, rstride =3, cstride=3, color=’none’, edgecolor=’k’, shade

=0)
135 set axes equal (ax)
136 # plt.show()
137 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
138 # Get time histories of Orbital elements
139

140 r hist = np.zeros((len(two body sol)))
141 velo hist = np.zeros((len(two body sol)))
142 ta hist = np.zeros((len(two body sol)))
143 raan dot = −((3.0 / 2.0) ∗ ((np.sqrt(u0) ∗ J2 ∗ Re ∗∗ 2) / (((1 − e ∗∗ 2) ∗∗ 2) ∗ a ∗∗ (7.0 / 2.0)))) ∗

(np.cos( i )) # rate of node line regression in rad/s
144 raan hist = np.zeros((len(two body sol)))
145 w dot = raan dot ∗ ((5.0 / 2.0) ∗ np.sin( i ) ∗∗ 2 − 2) / np.cos(i )
146 w hist = np.zeros((len(two body sol)))
147 a hist = np.zeros((len(two body sol)))
148 e hist = np.zeros((len(two body sol)))
149 i hist = np.zeros((len(two body sol)))
150

151 print(w dot ∗ (180 / np.pi) ∗ 60 ∗ 60 ∗ 24)
152 for j in range(len(two body sol)):
153 r hist [ j ] = np.sqrt(rS sol [ j , 0] ∗∗ 2 + rS sol[ j , 1] ∗∗ 2 + rS sol[ j , 2] ∗∗ 2)
154 velo hist [ j ] = np.sqrt( rS sol velo [ j , 0] ∗∗ 2 + rS sol velo [ j , 1] ∗∗ 2 + rS sol velo [ j , 2] ∗∗ 2)
155 ta hist [ j ] = np.arccos((h ∗∗ 2 − (u0 ∗ r hist [ j ]) ) / (u0 ∗ r hist [ j ] ∗ e)) ∗ (180.0 / np.pi)
156 raan hist [ j ] = (raan + raan dot ∗ t span[j]) ∗ (180.0 / np.pi)
157 w hist[ j ] = (w + w dot ∗ t span[j]) ∗ (180.0 / np.pi)
158 a hist [ j ] = (1.0 / 2.0) ∗ ((2 ∗ r hist [ j ] ∗ u0) / ((2 ∗ u0) − (velo hist [ j ] ∗∗ 2 ∗ r hist [ j ]) ))
159 e hist [ j ] = (−2 ∗ a hist[ j ] + 2 ∗ apogee) / (2 ∗ a hist [ j ])
160 i hist [ j ] = np.arccos((−2.0 / 3.0) ∗ (raan dot ∗ (1 − e hist [ j ] ∗∗ 2) ∗∗ 2 ∗ a ∗∗ (7.0 / 2.0)) / (

np.sqrt(u0) ∗ J2 ∗ Re ∗∗ 2))
161

162 ax1 = plt.subplot(3, 2, 2)
163 ax1.plot(t span / 3600, raan hist)
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164 plt . ylabel (’$\Omega$ (deg)’)
165

166 ax2 = plt.subplot(3, 2, 4)
167 ax2.plot(t span / 3600, w hist)
168 plt . ylabel (’$\omega$ (deg)’)
169

170 ax3 = plt.subplot(3, 2, 6)
171 ax3.plot(t span / 3600, ta hist ∗ 2)
172 plt . ylabel (’$\\theta$ (deg)’)
173 plt . xlabel (’Time (hrs)’)
174

175 ax4 = plt.subplot(3, 2, 1)
176 ax4.plot(t span / 3600, a hist )
177 plt . ylabel (’a (km)’)
178

179 ax5 = plt.subplot(3, 2, 3)
180 ax5.plot(t span / 3600, e hist )
181 plt . ylabel (’ e ’)
182

183 ax6 = plt.subplot(3, 2, 5)
184 ax6.plot(t span / 3600, i hist ∗ 180.0 / np.pi)
185 plt . ylabel (’ i (deg)’)
186 plt . xlabel (’Time (hrs)’)
187

188 # plt.show()
189 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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